Cell invasion by un-palatable parasites.
نویسندگان
چکیده
While some intracellular pathogens invade and replicate exclusively in phagocytic host cells, others have evolved mechanisms to stimulate their uptake by cells not equipped with a well-developed phagocytic machinery. A common mechanism utilized by bacteria involves the induction of macropinocytosis, or of other F-actin-driven processes which result in engulfment of the pathogen through formation of a plasma membrane-derived vacuole. Interestingly, this type of "induced phagocytosis" mechanism does not appear to be utilized by protozoan parasites, which are significantly larger than bacteria in size (about 5-10 microns in average length). Intracellular protozoa either restrict themselves to infecting "professional" phagocytes (one example is the trypanosomatid Leishmania), or utilize highly unusual mechanisms for gaining access to the intracellular environment. Here we discuss what has been revealed in recent years about the remarkable cell invasion strategies of two highly successful intracellular parasites: Toxoplasma gondii and Trypanosoma cruzi. Toxoplasma utilizes a distinct form of actin/myosin-dependent gliding motility to propel itself into mammalian cells, while T. cruzi invades by subverting a Ca(2+)-regulated lysosomal exocytic pathway.
منابع مشابه
Secretion by Toxoplasma gondii of an antigen that appears to become associated with the parasitophorous vacuole membrane upon invasion of the host cell.
Monoclonal antibodies against Toxoplasma gondii were prepared to characterize antigens of the parasite. Immunoperoxidase staining of parasites fixed with paraformaldehyde and glutaraldehyde (PFAGA) followed by Triton X-100 treatment showed that the antibody of clone I-63 recognized an antigen located in the anterior part of the parasite. When analysed by SDS-PAGE and immunoblotting, the antigen...
متن کاملFunctional Analysis of Rhomboid Proteases during Toxoplasma Invasion
Host cell invasion by Toxoplasma gondii and other apicomplexan parasites requires transmembrane adhesins that mediate binding to receptors on the substrate and host cell to facilitate motility and invasion. Rhomboid proteases (ROMs) are thought to cleave adhesins within their transmembrane segments, thus allowing the parasite to disengage from receptors and completely enter the host cell. To ex...
متن کاملPassage of parasites across the blood-brain barrier
The blood-brain barrier (BBB) is a structural and functional barrier that protects the central nervous system (CNS) from invasion by blood-borne pathogens including parasites. However, some intracellular and extracellular parasites can traverse the BBB during the course of infection and cause neurological disturbances and/or damage which are at times fatal. The means by which parasites cross th...
متن کاملMultimeric Assembly of Host-Pathogen Adhesion Complexes Involved in Apicomplexan Invasion
Apicomplexan parasites are the causative agents of diseases that include malaria, toxoplasmosis, and coccidiosis. These obligate intracellular parasites have evolved to use a conserved mechanism for host-cell invasion. The apicomplexan phylum is defined by the presence of micronemes and rhoptries, which are distinct organelles located at the apical end of the parasite. These organelles secrete ...
متن کاملToxoplasma Actin Is Required for Efficient Host Cell Invasion
UNLABELLED Apicomplexan parasites actively invade host cells using a mechanism predicted to be powered by a parasite actin-dependent myosin motor. In the model apicomplexan Toxoplasma gondii, inducible knockout of the actin gene, ACT1, was recently demonstrated to limit but not completely abolish invasion. This observation has led to the provocative suggestion that T. gondii possesses alternati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Traffic
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2000